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TWO DIMENSIONAL ANALYSIS OF THE GaAs

DOUELE HETERO STRI PE-GEOMETRY LASER
a

Leon Crun

Coordinated Science Laboratory

I and Department of Electrical Engineering
University of Illinoi s at Urbana-Champaign

I
~he Ga.A,gAs/ GaAs stri pe-geometry laser is analyzed using a

I recently developed technique called the effective dielectric

I 
constant (EDC) method . Unlike previously reported techniques , the

EDC method all~~~ both vertica l and horizontal directions in the

cross section of the laser to be taken into account in analyzing

the field confinement mechanism. Computed data on field concen-

tration and cutoff behavior of the fundamental mode are presented .
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I .  INTRODUCTION

L ) oub l c - h ct e r o - ju n c t i o n  CaA OA s/G aAs lasers const i tu te  a key

cnrnpo~ent in integrated and fiber optica l systems . The basic configu-

ration is illustrated in Fig. (la). When a strong dc bias is applied

between the stri pe electrodes , the segment of the GaAs layer

immediately below the stripe becomes active , resulting in lasing

ac t ion . The GaAs layer has a higher  dielectr ic  constant  than the

GaAi~As layer . Hence , it is easy to expla in  the existence of a guiding

mechanism in the ve r t i ca l  d i rect ion ( i .e .  perpendicular  to the l a y e r s ) ,

by means of a conventiona l slab waveguide analysis [2]. However ,

it  has been experimental ly observed that the f ie ld  is also confined i n

the t ransverse  direct ion ( i . e . ,  pa ra l l e l  to the layers). This effect

cannot be explained in terms of a n i n f i n i t e  slab waveguide since

no physica l mechanism is present for transverse field confinement .

It is now generally accepted that the dielectric properties

of the active region are slightly altered by iI’n lasing action . It

has been assumed by some workers that lasing action causes a slight

increase of the relative dielectric constant in the active region

(of the order of lO
s
), which is sufficient to explain field confinement .

only the rea l part of the dielectric constant was considered in explaining

transverse field confinement. However, some recent investigations [3],

indicate the real part of the dielectric constant in the active region

need not be higher and , indeed , may even be lower than that in the

passive region . Modal confinement is shown to be possible by the gain

t action itself.

I
I
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In previous analysis [3], the x and y directions were treated

independent ly .  For instance , in [3], only the structure which is infinite

-- in extent in the y direct ion is considered . In the ana lysis in this

paper , however , the finiteness in the y direction is taken into account by

the use of the concept of effective dielectric constants (EDC), which has

been successfully used to ana lyze a number of lossless passive dielectric

waveguides and components [4], [5].

In the following sections we will describe the ana lysis

of the laser structure and a number of numerical data for the

fundamental mode will be presented.

.1

I
I
I
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I I .  METHOD OF ANALYSI S

1ht.~ basic gcometry of the GaAs laser is shown in F i g .  ( la ) .

A GaAs laye r of thickness 2d is sandwiched between two identica l

GaMAs layers of thickness h . When an appropriate d.c bias is

app lied between the electr des A and A ’, the GaAs region undcr the

electrodes becomes active and causes a laser action . We model this

effect by assigning the region under the electrode a comp lex permit-

tivity cj  + je’., as shown in Fig. (ib). In this figure the presence

of the electrodes is ignored as its effect on the optical field is

negligible . From Fig . (la) we observe that the field is symmetric with

respect to the y axis and antisymmetric with respect to the x axis.

‘h erefore a magnetic and electric wall can be p laced in the y and x

p lanes , respec ti vel y ,  without changing the field configurations .

It is , hence , on!; necessary to consider the quadrant illustrated in

Fib . (2). Along the x direction we distinguish two regions : I. which

contains the act ive mater ia l  and III , which is purel y passive .

For the present , a l l  die lec t r i cs  are considered loss less .

Region I contains three dielectrics: (1) the active GaAs

wi th comp lex d ie lec t r ic  constant

= + (la )

0 < c ’ << ( i b )

where c~ > 0 represents the gain mechamism.

(2) the lossless CaA2As with rea l 
~2 

> 0 and

(3) the air with €
3 

= 1. Also we assume the following relations to hold :

I
I
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(2a)

> 
~2 (2b)

> 
~2 (2c)

A dielectric waveguide , as shown in Fig. (lb) is known to

support the propagation of hybrid modes , classified into two possible

f ield configurations: E X and ET . These modes can be represented by

e H j k z
two sca lar potentials , ~ and ~ . Assuming a e z dependence ,

Ma xwells equations [1] in terms of these potentials are :

~2~e
E - + w ~~k ç l~ (3a )x ~~~~~~~~ z

2
H (k2 ~~~~~~~ (3b )y

jk  e H

~~~~~~~~~~~ 
— - j w ~~~~~— (3c)

E = 
~~~

- (k~ - 

~~~~~ 
(4a )

2 H
H = - ~ u € k~~~~+~~--~-- (4b)x o z  ~y~x

H = jWe ~~— - jk (4c)

where

= permittivity of free space

= re lative permittivity in the region of

application
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However , due to the exc i t a t ion  the dominant e lect r ic  f i e ld  is in the

y direction . We therefore assume = 0. Furthermore , because the

differences between and 
~l 

as well as between €
1 
and 

~2 
are small ,

we assume the transverse wave numbers are small. This imp lies that

second de r iva t ives  can be neglected and the dominant mode is of the

type with the princi pal field components E , H , H and E .

A r igorous solut ion of Maxwell’ s equations for the present

laser geome try wou ld be exceedingly comp lex . However , it is possible

to introduce a simp lification by the use of the concep t of effec tive

dielec tric constant . If regions I and II were infinitely wide , they

would reduce to the double layered slab structures as shown in

Fig. (3a and Fig . (3b), respec tively. The propaga tion constants for

these double s l ab waveguides can be de termined by matching the

tangential fields across each boundary. Both these structures can then

be rep laced b , infinite , homogeneous regions having a effective

dielectric cons tant , which may be thought of as the dielec tric constant

of the hypothetical medium in which the phase velocity is identical

to that of the surface wave in the original (slab ) structure . Referring

to Fig. (2), we rep lace region I and II with vertical slabs of effective

dielectric constant ‘
~el 

and €e2~ 
even though these regions are not

infinite in the x direction . The result is the structure shown in

Fig. (3c). We can now solve the eigenvalue equation of this structure

for the propagation constant , which is assumed to be that of the origina l

structure . Notice that since is comp lex , 
~e1 

must also be comp lex

to represent the gain mechanism.
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III. DERIVATION OF THE EIGENVALUE EQUATIONS

In this section we derive the eigenva lue equations for the

structures shown in Fig. (3a), (3b), and (3c) and define the effective

die lec t r ic  constant  for regions I and II.

Noting that for the E~ mode , 
= 0, we see from equations

(3a) through (4c) that the tangential components to be matched are

and E . The relationships between H and E and 0
e arez x z

H 0e (5a )

E —s -— (5b )
z 

~r

Considering the structure in Fig. (3b) and noting that since E = 0 at

y = 0, we can choose the following function for

A cos k
2y d > y > 0

B
C
cos h (11

2
(y-d)) + B

Ssin h (11
2
(y-d)) d+h < y < d (6)

1_c exp[-~2(y-d-h)} y ~ d + h

Since the fields must match for all z we also have ,

= € k 
2 

- k
2 

= ~ + ii 2 
= ~2 ÷ ~2 (7)

z2 1 o y2 2 0 2 o 2

where is real and greater than zero , k 2 is rea l and is purely

real or pure ly imaginary . Using equation (6) we match H and E
~ 

at

y = d and obtain

A cos k 2
d BC (8a)

Ti
- k sin k d ~~ B

S 
(8b)€

1 
y2 ~‘2 ~2
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Simi larly at y d + h we obtain

B
C
cosh(fl2

h) ~ B
S sinh(fl2

h) C (9a)

11 11_.Z BC sinh( 112h)  ~~~ BS cosh(112
h)  = - (9b)

After some manipulation we obtain the eigenvalue equation

e.
l 

11
2 
tanh(112

h) + 
~2~2ky2 

tan k 2 
d= 

~2 
~2 ~2 

~1
tan h (11

2
h) +l

~2 
(10)

Together with equation (7) we can solve for k~2 and define the effective

die lec t r ic  constant for Fig. (3b) as

~e2 
= 

~l 
- (

ky2) (Il)

A simi lar ana lysis for Figure (3a) leads to the eigerwa lue equation

~1 
‘
~l 

tanh(T1 h) + 
~2 ~l

k 1
tan k 1 d 

= 

~~ ~2 
~1 tanh(~ 1

h) + 
~l 

(12)

Again

k~1 ~ 
k
2 

- 

~2 
k
2 +l 1~ = k

2 +~~~ (13)

and we define the effective dielectric constant for this structure as

(kyl 2

~el 
= 

~l 
— (14)

Note, however, that in equations (12) through (14) k 1, k~ 1~

l~~, ~~ 
and c

~ 
are complex quantities .

However , as a consequence of (Ib), the imaginary parts of all

quantities are much smaller than the corresponding real parts . Writing
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k k ’ + jk” (l5a )z i  z Z

= + jk
U

1 (15b)

= ‘ + (lSc)

= + j’
~ (l5d)

= + jc~ (15e)

we take a Taylors series expansion of both sides of equation (12) about

(k; ~ j~ ~~) .  Ignoring second order and higher order terms and equating

rea l and imaginary parts , we get

€
‘ Ti ’ tanh(Ti h) +~~ ‘ ~~

k ’ tan(k d) = 11 ~~ 1 1 2 1 
(16)

~2 ~2 
ç tan h (11 ’ h ) +11

and

k
1 tsin (k;1 

d ) + k’
1 d cos(k

’
1d)] 

= ‘fl~[€ ’1’ cos (k’ 1d)

- 

~; 
sin(k~1

d) k”1 d] 
. 

~~
-- + 11

1 
€~ cos (k ’

1 d) .

+ 
~~ ~; 

cos(k~ 1 d) 
. - 

~~~~~~~~~~~~ 

(17 )

where

N ’ = ‘fl tan h ( ’T1~~h) + 
~2 

(18a)

D = ~1
c~~tanh (l1 h) + 

~2
’
~i 

(l8b)
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N ’ = ‘
~[tanhC ~~h) + fl 1 h sec h

2
(li~ h)} + 

~2~~ 1 (l8c)

~~ €~ h sec h2(P; h + ~‘ c~ tan h (T h) + Ti~ e 
2 (l8d)

The rc:~l and imaginary parts of (13) are :

2 ‘2 2 ‘2 2 i2
€ k - k = € 1< + 11 k + (19)1 o y l 2 o 1 o 1

~~k
2

- 2k;1k;1 = 2~~~~
’ = 2~~~~

’ (20)

Observe that (15) and (19) constitute three equations for the three

unknowns k 1, T~~, ~~ Once these unknowns have been solved , their

value can be substituted into (20) and (17). Note that equation (17)

is a linear equation in k”1, as indeed , it shou ld , since only the first

term of the Taylor ’s series was kept. Ignoring higher order terms ,

equation (14) may be written as

, I
k 1.2 ,, 2k k

“ el 
= 

~el 
- + 

~ \ l  
- 

Y1Y1
) (21)

o k
0

Having defined the E.D.C. in equations (14) and (21) for the equivalent

slab structure (Fig. 3c) we can now proceed solving for the wavenumbers in

the x direction with a analysis similar to that in [3]. The tangential

fields we are interested in matching now are E and H .  From equations

(4a) and (4c) we note

E ~e (22)

~
H (23)

z



—

I
14

Writing ~e as

1A c08
~~~ 

0< x ~~~a

(24)

LB exp[- ~ (x -a)] x ~>a

we match the fields at x = a and obtain

A cos(u) = B (25)

- A sin(u) = - B (26)

from which one gets the eigenvalue equation

w u tan(u) (27)

As before , by matching the fields along the z direction we also get

another  equation for u and w

k~ 
= 

~el 
k2 - 

~~)2 
= 5e2 k

2 
+ W (28)

Notice that u = U
r 

+ ju., w = Wr 
+ jw~ are in general complex numbers .

In the following sections three cases will be Considered :

(i) Re€
1 

= 5e2’ (j~~~ ~~
5
eI
> 

~e2’ 
and (iii) Re€ 1 < 

~e2

1•



15

lv . RESULTS AND DISCUSSION

in Fig . (4) and Fig. (5) the solution for the equiva lent

dielectric constants defined in equations (14) and (21) are d i s p l a y e d  for

different values of €~ and €
~~~

• Since equations (12 ) and (16) are

iden ti cal , Fig. (4) may be used to compute both and 
~e2~ 

The equations

we re solved by i t e r a t i o n  using Muller ’s Method , convergence was quite

rapid and fa~ r1y insensitive to the starting point . The program is

included in the appendix.

We now proceed to examine the f i r s t  case ( i . e . ,  Re€ 1 
=

First we note that from equation (28) we can solve for

2 2
w a k [~~~1 

- 

~e2 1 - u (29)

Since Re € 1 
= £ e2 equat ion  (24) can be rewritten as

w = 
![a

2 
k
2 
(ImL~€ )  ~~

2
1 (30)

where &~ - . Defining v a k ~
‘Im~~ , we see from equation (27)e el e2 o e

that all physical dependence of the transverse wave numbers can be defined

in terms of a single variable ~~~ called the normalized gain . Equa tion

(27) is then solved , again using Muller ’s Method .

Figure (6) and (7) show the solutions for w and w. vs. lv i .
Figure (6), which indicates the rate of field decay in Region II , shows that

gain (i.e., ImL
~
e
e 

> 0) induced modes exist , and are in fact guided throughout .

That is , the gain induced by the imaginary part of the effective dielectric

constant is solely responsible for the field confinement. From figure (8)

as well as from figure (9), which shows the percent of the cross-sectiona l
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power in Region I , i t  is clear that  the greater  the gain , the more field

is concentrated in Region I (active region). The values of the field

i n t e n s i ty  at x a (F ig .  8) have been compared to the results obtained by

Schlosse r  [3]  and the agreement is good .

In ( d Se (ii the gain as well as the increase in the rea l part

1)1 the EDC in Region I contributes the confinement mechanism. However ,

this case will not be discussed further , because the confinement due

to the rea l part is understood as the surface wave mechanism.

Case (iii) requires more careful examination . It is known that

a quasi -mode (leaky wave mode) with low loss can exist in a passive

channe l waveguide , where the core material has lower re f rac t ive  index than

the si:counding medium , prov ided the core size is appreciabl y lar~,cr

than the wavelength [6]. The latter is always the case in the configura-

2a~~tions under study ,  as we have typically T 20. As the epithet leaky

sugges t , propa ga tion in such a “mode” is intrinsicall y accompa nied by

power loss due to leakage from the core into the surrounding medium .

Hence ,, unless  energy is continuously supp lied as the wave propaga tes , the

leaky mode will vanish below a detectable level after propagating over a

f in i te distance .

In the present situation the supp ly mechanism is prov ided by gain

in the region where wave is propagating . Hence , sufficient gain will

sustain a s t ab le  cutoff mode , i.e., mode exhibiting no gain or attenuation

outside the core . When this occurs , wr 
= 0, as the field amplitude in

Region II is expressed as exp[_wr(~ 
- 1)] .  We recall that the attenuation

cons tan t of a leaky mode is approximately inversely proportiona l to the

index depression (see for instance , 1.6-34 of [6]). Hence, the cutoff
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point is achieved with higher gain for decreasing refractive index

depress ion , invo lving larger  leakage .

For a given refrac tive index depression , as the gain increases

above the value corresponding to cutoff (i.e., the amount of gain needed

to compensate for  leakage losses) ,  then increasing f ie ld  confinement

takes p lace .

On the other hand , physica l intuition suggests that field con-

finement is more sensitive t gain increases for smaller depressions .

This is eas i ly shown to be the case by means of the approximate analysis

similar to that of [3]. We begin by again defining v = a k \ 
~el 

- 

~e2

Im~ e -

v a k ~~~~~ (i - j e (31)
0 e

Since Re~~ 
< 0

e

- ImL~€ -
~

V = ja k \  ) R e L ~~~ j ~~ - 
e 

(32 1

e

I mL~€
If 

e 
<<1 , then

fReL~€ f

Im~ c
v ja k - . ReA

~e f (i ~~ 
e 

(33)
IRe M e

Let V . = a k ‘7 f R e ~~c I (34)
1 o e

ImL~€
v = a k  e 

(35)r 0 2 ReL2~€e

then v V + jv . (36)
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u 2
In the case under study < - :  I , therefore ,

/ 2

— 
w = vJl - (s-) ~~v

eand w (37)r Re~~ f

dv 
1and r 

1 
(38)

d(Im~~~ ) Re~~ f c

In ot1 ’~r .:urds . the  s lope  of W
r 

decreases fo r  increasing depress ions .

The occ ’Ir ’cn ~~c of tho  — hove two eflects on the n~::~ericaJ s luticn is

sh own in I 1I ~ I 1 .  (10) .  In p a r t i c u l a r , the approx imate  l inear ty  of with

Imi - imp lies the existence of a cross over point for two different values

01 Re~~~~. Fi~~~i-c ( 11) ~;Iiows the solution fo r  t I u -  i m a g in a r y  p a r t  of w .

In  f i gu re (12 ) we show the f i e ld  i n t e n s i ty  a t  x = a , with ImAe as

the variable and R e / C  as the pa r a m e t e r .  From f i g u r e  (13),  the numerical

r e s u l t s  i nd i ca t e  t h a t  fo r  depresi~ions less than .001 more gain is required

to maintain guiding thaa for srnn!ler depressions . However , for depress ions

l arger than approxima tel y .001 the pa t t e rn  reverses :  the g rea t e r  the

depress ion the less gain is required to insure guidance. This phenomena ,

jus t discussed above , can also be verified by a approximate solution of

equation (27).

We start by assuming ur 
is close to n/2.

u = (
~

- fa) + jb (39)

where a l and Ibi  <~ 1.

Since l~ , 2 
<
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2~, I, - 2
w = v~ l - (~~

) ) v~~i -~~~~ 
(
~~) ) (40)

and (27) becomes

2

~~ 
~- + a + jb 

~ 
- 

-

(V +jv .)I 1 
~~~~~~~~~ ~~~~

. ~i = (-
~ 
+ a + jb)tan (~- +a + ib) (41)

~lnce v - - - I and V . > l~ V may be ignored . Furthermore , we note

that tan (~~+a +jh) ~
- -l/ (a +jh), and if lRe L~e i’~ large enough ,

1~
•

1 ~
such that  - 

v . ) ~~~~ equation (39) becomes:

(1
+a+ jb)

] V . - 

a+ jb (42)

Solving now for a and b we get

2) (43)
1 +v .

1

b 
2 ) (44)

I + v .
1

To show the behavior at c u t o f f , we expand equation (28).

‘ 2 2
- w~ + 2j w rwj  (a k TRe1~€ + j ( a  k) ImAe

- u2 + u~ - 2iu u~ (45)

At cu to f f , by definition ,w = 0. I t  follows, then , that

2( a k )  Iml~€ = 2uu~ (46)

Using the results from equations (41) and (42 )
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Fig. 10: Rea l part of 14 vs. lm~e with Ret~s as parameter.
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Fig. 11: Imaginary part of 14 vs. Im1~€ as parameter.
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3
v.

Imt~ (at  c u t o f f )  = 

~ ~~ [~ +v~~~~ 
(47)

it can he imediately seen that , since V . ~ 1,

Lmt~e (at cutoff) ~ —s-- i/./f ReA€ I . That is , the larger the depress ion,

the smaller the gain necessary to insure a guided mode . Equation (45)

is plotted along side the numerical results in figure (13).

Looking at equation (32), it is possible to define a more

genera l set of variables .

Im~~
R = 

e 
(48)

and v = ~ JiReLI~c I . (49)

Data , simi lar to tha t  in figure (10 ) through ( 13), is presented in terms of

these var iables in figures (14) through (17) .

1,~
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Fig. 13: ImAS at cutoff vs. Re!~ € I .

1•

I
I
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Fig .  15: Imaginary p ar t  of 14 vs.  R wi th  V ’ as p aramete r .
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Fi g. 16: Magn i tude  of the f i e l d  at x = a vs. R with V 1 as pa rameter.
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Fi g .  17: R a t  c u t o ff  vs .  V ’.
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• V. CONCLUSIONS

Two dimensiona l analysis , based on the concept of e f f e c ti v e

dielectric constant , was presented. Severa l numerica l results are

provided for the fundamental mode , i l lus t rating gain induced conf inement

in the t ransverse  direction . Gain induced moda l confinement is shown

poss ib le  even for a leaky wave structure and cutoff behavior is

investigated . 

~~—.. - - - 
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VII . APPENDIX

In this section a program to solve equations (16) and (17) ispresented . The algoritFrn used was M.iller’s methxl . Convergencewas q’at2 rapid and fairly insensative to the starting point .

c T~iIS PQ1r,Q*~ S~ L~ E~ FWJAT ION~ (t.~) AND (17) USTN (~ MULLER’S
C M~~~~T . 1 f I ,) . A L L  ; I l A ~~~! T 7 T f l~~~~ A I~F P~’OQMAL !ZED M1T~’ RESPFCT To
C ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ M ’JST RE Su PPLIED . IMAX IS THE
C M A X I M U M  ~~~~~~~~~ 

r IIFPA T IU ~ S. ~ !~~T IIAL r,jFsS 73 MUST B~
C SUDP L LED AS ~IELL AS T~iE EXPECTED ERROR (ERROR) QF THE
C &~j~~SS.
C S i J I,JOTC AT FS W H E T M F M  ETA ’ IS R FA L OF IMA (;IWARY .
C E PS1 A~ l) EPS? A I-I E CR IT ER IA FOR STOPPTNr1 THE ITERATION

CO M M ON E2 ,F1, H,D,~’i AVE L .PI,SIa 1•3~14j ~
PIT 22.
W 4V E L ~~~I.E..b
P 4 3 ’~~~. * , 4 A V FL

O..2’5*W A~~Et -

C N O Q~~A L ~~ZE ~!TH RESPECT TO (~
z I ~ T ~/ ~ A V F I.) * H

I): (P T ii.. ’vEt. ) *0
‘P~~1s1 .E S

I~~A X a 5 Ø

C ~~~ OF A T A CLOCK

C ~ € 5 l N  ~O~
)T FT’~DIP”G ROUTINE

C T~~ W~~I )A T IO ~~ MIL L RE SOL V ED F09 DIFFERENT VALUES O~ El
no 1(~’~ ‘c’i .iE1 . ? .~~

‘ . C ’ ( —j )  a
“ IC S t i C I
NC 0

C Ir~TTT AL GUESS
73..M81

‘)tLYA.FRRr)P
IF (~iC.C,T.1) ?3’Z— ,Ol

~i ‘Z ~~~D~~L T A
Z~~.Z3.r’ELTAv~. uF r Z I )

V A i .l.F C7~~)
V A ,. S ~ F ~l ~

)

99 flLLls (13—71)/(22— ZI)
AL*’i~ .f2~ —7?~ /(ZP 7l)
GI S AL A’~’ 

V A t . 1 t ) FL I .  *2*  V A L ? ,  ( Al. AMI.DELI ) aVA ~3
C I  .aLa W i . (A LA M I  . VA L  1—i ~F~L 1 . VA L 2 ,V A L 3 )

SRI.
7~~~ I ,LT.r~) ~.—1 ,ALA ’I.C_2,aflELlaVAL3)/ (GlaSaSORT(*BSCG$**?.1.*DELl eClaVA ~3)))
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P P ’ I K 1 ( Z ) .~2 * V I . E T * V 2
F u Z a S I P  ( 7 . f )  *r~Tl .E T* (Ej/E2).I~O3(Z*D3a(TOP)
PE T U RN
EN’)

F t ’ ~C ’TI O ~ ETACZ )
~O”~MO~’4 L2 ,F t , rI , D ,  M A V E L , PI ,Sj
Slit.

C IS ~~T~~~’ TM A G TNA ~ Y?
li n j— r~~— z*l?.LE .~~ S1~ — I .
E ’TA.SI ~R T ( A R S ( ~~1— E 2 — Z * * 2 ) )
RE T U P N

F u N c T I Q ~ X ! ( Z )
C t ~f’~ E? .FI ,Pl ,U ,i .AVEL, PI ,5t
~1~~SW~T ( Fj .t , . .7** 2)

I U P N
END

Su~~ OU~~PtE SS (Z,FT,AX )Cj91C, r. E? ,~- I. r4 ,U ,#dA VEL ,PX ,S1
C T~~75 S ‘~‘)IJTTi,~ ~0M PUTES ~Y’’• S7P’.C~ A K Y ’’,BE’’ AND
C F s *a~~y~~~~a F ’  (~~ f3 :PM) ,  YHjS IS A E ’)UA TION IN TWO
C U : ~r’~ ’S. ~IVE ’~ FSI IX I) AN D F32 (X2) FOR SOME VALUES
C OF (~~y’’,~~’’) 

T ,-’ E SLOPE IS COMPUTE ’).
C FS.I5 ( y ’.ETA’ ,XI’,~~V’’,E ’ )

X1.FS (7 ,FT ,AX~~t.E..’,I .E.3)

~~ ~ j + X 2 ) / 2 . E — 3
A l  (X  ~ — 1  • E.3* PN) /1 ~~— 3SLOPE~~.~ PrI~ A

C ‘J (j ,~ C O M p ’ ~~7E THE SLOPE FOR E(EOtJIVALENT )’’ .V$ , E’’
$ L O P E 2 S L  .— Z a S L O P E 1

TYP i ~~~~~~~~~~~~~~~~~~~~~
30 Fij 1~r- A T ( ’  • .~~~t t s ,Iil t . 4 , 2 X ,a H ( y ’ a .G, t . a,aX ,THSI_ OPEI.,

IC~ 11. 4 . 7HSL0PE2., GIL 4)
RETURN
END

F U N C T I O ~4 FS(R1,U? ,B3,B4,R~)
C RI.~ Y ,I1~ lE TA’ , 3aXI’ ,M4RKY’’,RS.E*’

CO MM O ”~ ~P,F~~• l •P ,~~AVE L, PI ,S~
‘)t.3?Pt’~1 ,R2.B4,R5)
02 103 P ~~~~

C Hj1’s€TA’’ ,R3PSXI’’

D~ 3 • ~ P * *2  * I A H (k ~ * .4) eF ~ * ~ 2
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—“~~~~ —‘.- - - ~,._
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V A t . 2’V *% _ 3
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CU 10 99
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E T . E T A ( 7 )
A l a x I  (7)
I Y P F  IS , 7 ,~~I . ET , A X
FOI Ji A T 1. • , 3H~(Y2 ,G1M .7 • 3X .C9 .2 .2X , 4 H E T A . , G 1 4 . 7 . 2X ,
13M x 11 ,;l4 .7)c 1r si~F T p tiTT T ” .G PLOCK ANO OIHfP OUTPUT 5TA~~EMEP1T.

C CU~ PI TF FFFICTIVE OIEL ECTRI C CONSTANT
E~..z c.i— Z a ’ 2
T~~Pi j~, , F 1, E t )
FUW A T (  .~~‘4 E1 i , G I ? . S , 3 X ,3H E U . ,G 1? ,5)
r.*i L SS(7.FT, *X)

C 5o L V~ FU R S L O PE OF ~ Y ’

i 0 ¼ ~ 
CO ’iITNU f

II’l STOP
END

Ft~ ’CT IOI F (2)
rUM~~flN ~? . €I  .H ,D, W A V EL. P! ,~~1
ET .~~T A (~~

)
C IF L T A  15 I M A G I N A RY  CO S M B ECO MES COS ETC ..

T F ( s I )  31 ,Sj ,3P
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